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Abstract 

Progressive shortening of telomeres ultimately causes replicative senescence and is linked with aging 
and tumor suppression. Studying the intricate link between telomere shortening and senescence at the 
molecular level and its population-scale effects over time is challenging with current approaches but 
crucial for understanding behavior at the organ or tissue level. In this study, we developed a 
mathematical model for telomere shortening and the onset of replicative senescence using data from 
Saccharomyces cerevisiae without telomerase. Our model tracks individual cell states, their telomere 
length dynamics, and lifespan over time, revealing selection forces within a population. We discovered 
that both cell genealogy and global telomere length distribution are key to determine the population 
proliferation capacity. We also discovered that cell growth defects unrelated to telomeres also affect 
subsequent proliferation and may act as confounding variables in replicative senescence assays. Overall, 
while there is a deterministic limit for the shortest telomere length, the stochastic occurrence of non-
terminal arrests drive cells into a totally different regime, which may promote genome instability and 
senescence escape. Our results offer a comprehensive framework for investigating the implications of 
telomere length on human diseases. 
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One-sentence Summary 

Key determinants of population proliferation capacity in the context of telomere shortening. 

Introduction 

Mathematical modeling plays a pivotal role in elucidating the underlying principles and mechanisms 
governing biological processes. However, developing models that capture the heterogeneity of 
biological systems is challenging, particularly when heterogeneity evolves over time during population 
growth. This occurs during tumorigenesis, for example, where increasing genomic instability can affect 
cell morphology, proliferation rates, invasion potential and resistance mechanisms (1). Another example 
is the phenotypic heterogeneity that accumulates over time in the course of replicative senescence 
caused by telomere shortening (2).  

In human somatic cells, telomere shortening eventually activates the DNA damage checkpoint, arrests 
the cell cycle and triggers replicative senescence, which is thought to contribute to human aging (3), (4). 
The loss of telomere length homeostasis is also a characteristic of cancer cells (5). Likewise, abnormally 
short telomeres are responsible for a spectrum of deadly telomeropathies, which currently remain 
incurable (6). However, the mechanisms linking telomere shortening with replicative senescence at the 
population level remain poorly understood (2, 7-11). 

Phenotypic heterogeneity in replicative senescence cannot be deciphered in population-based 
experiments, in which senescence appears as homogeneously progressive. In contrast, single-cell 
analyses, mainly obtained in telomerase-negative Saccharomyces cerevisiae, have revealed that 
senescence of individual telomerase-negative cells is highly variable (12-14). In addition, senescence 
onset is often abrupt: cells switch in a single division from fast proliferation to a prolonged cell cycle, 
which can be followed by a few more long cell cycles before cell death. Below we use the term replicative 
senescence or senescence to refer to this ultimate sequence of long cell cycles, qualified as terminal 
since they lead to cell death in the budding yeast model. 

Because the onset of senescence may happen at different times, even for descendants of the same cell, 
it is an intrinsically asynchronous process. Numerical and experimental evidence in S. cerevisiae support 
a model in which senescence onset is triggered by the shortest telomere reaching a threshold length, 
from which the DNA damage checkpoint is first activated (11, 15-18). Alternative hypotheses proposing 
that replicative senescence could be triggered by multiple telomeres or simply by the passage of time 
fail to explain the substantial variability observed in the onset of senescence. Therefore, a significant 
contributor to asynchrony arises from the shortening trajectory of the shortest telomeres within a cell. 
This trajectory is driven by the process of telomere replication, which inherently generates asymmetry 
and variability, as observed at the molecular level in S. cerevisiae and other organisms (19-22). 

In addition to the variability in senescence onset, another source of heterogeneity during the onset of 
senescence was observed in single telomerase-negative budding yeast cells (13, 14). Specifically, a 
subset of individual cells, so-called type B cells, undergo several switches between non-terminal arrests 
and normal proliferation prior to terminal senescence, in contrast to type A cells, which undergo the 
switch in a single step. Even though both terminal and non-terminal arrests are abnormally long cycles 
associated with the activation of the DNA damage checkpoint, their manifestation corresponds to 
distinct probability laws, thus possibly arising from distinct molecular origins (23, 24). In non-terminal 
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arrests of type B cells, the cells either recover upon repair of a damage, presumably stemming from a 
yet unidentified telomere defect, or adapt to the damage, forcing mitosis until successful repair. These 
cycles of mitosis in the presence of unrepaired DNA damage are a source of genomic instability, which 
likely fuels additional heterogeneity. 

While these single-cell level observations and population experiments that determine the average or 
use only single time-points have provided insights up to a point, these two types of information would 
need to be combined to decipher the key determinants of onset of replicative senescence in vivo. For 
instance, the generational age or length of the shortest telomere triggering replicative senescence 
cannot currently be accessed experimentally in populations or individual cells. Thus, to study specific in 
vivo dynamics requires modeling senescence at the population scale. This provides a biologically-
relevant scale for understanding tissue development and renewal, aging, cancer emergence and growth. 
However, this is challenging for several reasons, including the complex effects of competition and 
selection, and the poorly understood effects of telomere shortening, cell death, terminal or non-
terminal arrests on population dynamics.  

To overcome these experimental limitations, we built a mathematical model of telomerase-negative cell 
population growth, and used single-cell data to calibrate it. We used S. cerevisiae, in which telomerase 
can be inactivated, as a well-documented experimental model of replicative senescence (25-27). We 
thus exploited the wealth of information and molecular models derived from S. cerevisiae regarding 
telomere shortening pathways, the molecular mechanism underlying replicative senescence, and the 
data from single-cell lineages in microfluidics experiments (11, 14, 16, 18, 23, 24), to track in depth the 
state of each individual cell of the population, including the length of each telomere over time. We 
managed to delineate hidden components of replicative senescence mechanism beyond the scope of 
experimental observations. Specifically, we found an almost deterministic limit of telomere length 
triggering senescence, existing alongside a different regime with a fully stochastic route to senescence, 
driven by the random occurrence of non-terminal arrests. This route, together with the strong selection 
of cells carrying the longer shortest telomeres in the initial population, offers potential senescence 
escape. Our results also enable an assessment of the consequences of other independent comorbidities 
on lifespan with consequences for our understanding of age-related human diseases.  

Results 

Rationale of the mathematical model 

We built a population model and used in silico experiments to investigate the structure and evolution in 
time of a population of yeast cells in which telomerase is inactivated. In order to validate the model with 
experimental data, our strategy was to mimic actual senescence experiments in which population 
doublings are monitored each day from telomerase inactivation to senescence crisis, i.e. when the 
culture reaches the lowest growth capacity, typically a few days after telomerase inactivation. In order 
to focus exclusively on the first driving forces of senescence mechanisms, and because of the lack of 
data at the single-cell level, our model does not take into account the post-senescence survivors, whose 
frequency was globally estimated at ~2.10-5 (28). Because cells grow very robustly and exhaust nutrients 
during the first days of the experiment, cultures are diluted each day in fresh media, so only a fraction 
of the population is sampled for the next day. In this assay, the cell concentration and the statistical 
mode of telomere lengths, i.e. the peak of the telomere length distribution, can be measured each day 
(Fig. 1A).  
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This typical population experimental design introduces several biases. Firstly, cell-to-cell variability in 
cell cycle duration times introduces competition (fast-dividing cells rapidly take over the population). 
Secondly, senescence-induced death also introduces selection effects: fast-dividing cells, although over-
represented initially, are likely to die first because they reach their proliferative limit faster in time. In 
contrast, slow-dividing cells can take over the population in the long term. Therefore, in a replicative 
senescence culture, the number of population doublings is not linearly related to the number of 
generations undergone by cells, and consequently, daily telomere length measurements cannot be 
directly used to estimate a shortening rate per generation. Besides, daily dilution constitutes another 
sampling bias.  

The mathematical model is largely based on our data from single cell lineages observed in microfluidic 
experiments and accounts for a number of already well-characterized types of cell-to-cell variability, as 
described in (16, 18, 24). In the microfluidic experiments, the consecutive cell cycle durations are 
measured from telomerase inactivation to cell death in individual cell lineages (Fig.1B-C). These 
quantitative data enabled us to define senescence pathways and their estimated frequency, i.e. the 
presence or absence of non-terminal arrests, and the switch from type A to type B cells. Type B cells may 
senesce during the course of their first consecutive non-terminal arrests. These arrests cannot be 
experimentally distinguished from type A senescence arrests. We thus introduced in our model a 
“misclassified” type M, corresponding to type B lineages which would have been experimentally labeled 
as type A (Fig. 1D-E). Hereafter we will often refer to any cell that falls under the category of type B or 
M, i.e., cells whose ancestors or the cells themselves have experienced a non-terminal arrest, as type B 
cells. Though important for calibrating parameters, this misclassification appears not to change the 
results qualitatively. 

The model requires a detailed description of the population at the single cell level: each cell is tracked 
in time through its state 𝑆	 = 	 (𝐿, 𝑇, 𝐶, 𝜏, 𝑋), namely its: 

• telomere lengths 𝐿 ∈ 	𝑍!"#$ (there are 16x2=32 in a haploid S. cerevisiae cell which contains 16 
chromosomes)	 

• cell type  𝑇	 ∈ 	 {𝐴, 𝐵,𝑀} 
• cell cycle type  𝐶	 ∈ 	 {𝑛𝑜𝑟, 𝑛𝑡𝑎, 𝑠𝑒𝑛},  for normal duration cell cycle (𝑛𝑜𝑟), or prolonged cell cycle, 

which includes non-terminal arrest (𝑛𝑡𝑎) or terminal (senescence) arrest (𝑠𝑒𝑛), respectively, 
• cell cycle duration time  𝜏	 ∈ 	𝑅% 
• and a set 𝑋of individual variables of interest (generation, birth time, ancestor index in the initial 

population, etc.) 

This description of the population thus goes beyond the accessible population data.  

Initialization and progression of the model 

We started with 𝑁&'&( non-arrested cells of type A and generation 0. The initial 32 telomere lengths of 
each cell were drawn randomly and independently, from the distribution described in (11, 16); minor 
modifications on this distribution are described in the Methods section and (Fig. S1A). 

We let cells evolve by consecutive cell divisions. At each cell division, transition probabilities from a given 
mother cell’s state to its daughters rely on the three following submodels: (i) The telomere shortening 
model (18); (ii) Laws of arrests / cell cycle types transition (Fig. 1D-F); and (iii) Laws of cell cycle duration 
times (Fig. 1G). The length of the shortest telomere in cells was computed after running the telomere 
shortening model (i) described in (18). The transition laws (ii) are driven by the cell and cell cycle types 
together with the length of the shortest telomere in the cell and account for the two regimes described 
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in (14, 24) (Fig. 1D-F). We built upon previous work (18, 24) to estimate the stochastic laws describing 
the entry in a sequence of arrests and exit by either repair or death for non-terminal or terminal arrests, 
respectively. To these laws, we added a probability of spontaneous death, assumed to occur at a 
constant rate. These events were assumed to happen at birth (independently in each daughter cell) as 
summarized in Fig. 1E. The cell cycle duration of each cell (iii) was then drawn from the experimental 
distribution corresponding to its cell type (Fig. 1C, G). 

Every 24 hours, the whole population was diluted: we sampled, randomly with equiprobability, a 
number 𝑁)&*	 of cells (𝑁)&*	 = 𝑁&'&() to initiate the next daily culture. As soon as the population reached 
a saturation number 𝑁,-(, we stopped making cells divide until the next dilution. 

Calibration of the model 

The laws of arrests 𝑝'(-, 𝑝,.'!  and 𝑝,.'"  (Fig. 1F) were fitted altogether on the basis of the generations 
of arrest from the microfluidics data, using the CMA-ES optimization algorithm (Fig. S1B-D). The 
probabilities to exit a sequence of arrests (𝑝/.0-&/  and 𝑝).-(1) were assumed to be constant, as 
demonstrated (24). For senescence onset, 𝑝,.'!  was found to be nearly deterministic and 𝑝,.'"  
independent of telomere length (Fig 1F). This corresponds to two clearly distinct pathways to 
senescence. A cell can thus follow two scenarios: 

• Divide for a number of generations of normal cycles until one telomere reaches the almost 
deterministic threshold ℓ2&'! = 27	𝑏𝑝.  This is the canonical pathway of type A lineages, which 
confirms the deterministic model of (16), which focused exclusively on senescence onset of type 
A lineages; 

• Or experience at least one non-terminal arrest to become type B with probability 𝑝'(-. Then, 
the cell has a constant probability of entering senescence at each cell division, which results in 
a great variability in the length of the telomere triggering senescence of type B (possibly longer 
or much shorter than  ℓ2&'!). 

With these laws calibrated (Table 1), we next simulated the evolution of cell lineages as grown and 
analyzed in the microfluidics experimental setting (Fig. 1H, S1E-G). The obtained profile was remarkably 
similar to the experimental one (Fig. 1C). By considering the cumulative simulated data for 1000 
independent virtual experiments (Fig. S1D-E), we were able to quantitatively compare the experimental 
data with the simulated one. The median and variance of experimental lifespan of lineages fit very well 
within the confidence interval values obtained in the simulated data (Fig. S1D). Likewise, the simulated 
percentage of type B cells lies between 61% and 89%, consistent with the range of experimental type B 
proportion of 61-67% (see Supplementary Material). Altogether, our mathematical model correctly 
recapitulates the experimental microfluidics data. 

Mathematical model of a senescent population 

We next wished to simulate a senescence experiment performed in a population (Fig. 1A, S2A-B). 
Different laboratories use variations of the same protocol. In the experimental example we used, 
cultures starting at an optical density measured at 600 nm (OD600 nm or OD) of 0.0125 are grown 
exponentially in rich media. Wild-type strains are expected to reach 9-9.5 OD, which corresponds to ~9.5 
cell divisions (Fig. S2A) (20, 29). Since wild-type budding yeast divides in 90 min on average in rich media 
(Fig. 1G), this means that saturation is reached after ~15 h. The culture is then diluted every 24 h in fresh 
media back to OD = 0.0125.  
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Simulating the exponential growth of such a high number of cells (saturation corresponds to up to 3.108 
cells/ml) is too expensive in terms of computation and allocated memory to keep track of all the 
parameters of the cells (Fig. S2B). We thus tested whether simulating smaller populations generated a 
bias. To this aim, we identified a minimal size 𝑁&'&( = 300 at which populations were big enough to 
account for the experimental data in terms of cell growth (Methods and Extended Materials & Methods). 
We then defined a saturation ratio 𝑟,-(  in order to stop the simulation each day when the number of 
cells reaches 𝑁,-( = 𝑟,-(𝑁&'&(.  

Validation of the model with data extracted from population senescence assays 

Based on the above, we simulated cultures of telomerase-negative cells (Fig. 2A). To test validity, 
simulated curves were compared with experimental population data, specifically the daily monitoring 
of the cell concentration and the mode of telomere length distribution extracted from (20) (Fig. 2B-C). 
In this setting, since saturation is reached after ~9.5 divisions, we set r345 = 720 ≈ 26.8. We observed in 
Fig. 2B that simulations of the number of cells and experimental measurement of OD were in good 
agreement for the first 4 days, before there was a drop in proliferation capacity starting at day 5 in both 
experimental and simulation curves. The same applied for telomere length, in which experimental and 
simulated telomere shortening fit well, though discrepancy started at day 3. The curves of the 
experimental growth and telomere length profiles were maintained above the simulated profiles from 
days 4-5 and after. This suggests that our model recapitulates well the events at work in the majority of 
cells present in the population during the first days spent in the absence of telomerase. A reason 
explaining the difference between the experiment and the simulation is that we started the simulation 
from 300 cells instead of~3.108, so that extreme cases have less chance to be part of the initial set. This 
has two consequences. The first is that we omitted post-senescent cells and their descendants, which 
appear at a low frequency of ~2.1098 (28). Post-senescent survivors are expected to contribute to the 
increase of cell growth and telomere length, but when they initially appear is currently unknown. Based 
on the comparison between our simulations and experimental data, they may be already present at day 
3 or 4 in a non-negligible proportion. The second consequence is that some extreme cases, like cells 
having very long initial telomeres, would survive much longer than others and would then greatly 
contribute to the population.  

Another reason that might explain the difference lies in the method used to experimentally inactivate 
telomerase (the TetO2 repressible promoter): it might display some leakage, so that a few critically short 
telomeres could be specifically elongated by very few active telomerase molecules in cells (30). Similarly, 
although this may apply to only very few cells, they may become dominant over time when all other cell 
descendants have entered senescence.  

Having these two bias sources in mind, we concluded that our simulations best recapitulate the 
dynamics of a population in the absence of telomerase within the first 3-5 days after loss of telomerase 
activity. Because it omits the post-senescence survival pathway, our model should help dissect the 
causes and consequences of the mechanisms contributing to the decrease of cell proliferation (i.e., 
replicative senescence) in the absence of telomerase. 

While varying 𝑟,-( had some effect on senescence kinetics (Fig. S2C-D), for the rest of the study, we 
rounded the number of population doublings to reach saturation to 10 (𝑟,-( = 1000). 
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Assessing quantitative data on population structure and evolution. 

Our simulations also enabled quantification of the heterogeneity of replicative senescence cultures in 
terms of composition of cell “age”, expressed in generations. As time progressed, the number of 
generations undergone by cells increased rapidly in early cultures and more slowly in late cultures (Fig. 
3A). This reflects the fact that cells that have undergone prolonged cell cycles remain longer in the 
cultures, so that there is a progressive replacement of type A cells by type B cells (Fig. 3B). The variance 
of these generations also increased substantially with time, reflecting the increasing heterogeneity of 
cultures. Notably, the proportion of senescent cells became substantial prior to the experimentally 
measurable decline of cell proliferation in cultures (Fig. 3C). At days 3-4, while one cannot detect a 
decline in the population proliferation potential (Fig. 2B), 10-25 % of the cells in the cultures are actually 
senescent. When we detailed the composition of senescent cells according to cell types (A or B) (Fig 3C), 
we observed that on the first day, the vast majority of the cells entering senescence were type B, partially 
misclassified as type A, since telomeres of type A cells have not yet approached the threshold ℓ2&'! =
27	𝑏𝑝. On day 2, type A cells started to enter senescence and from day 3 to day 5, there were 
significantly more type A cells entering senescence than type B. The last cells entering senescence from 
day 5 onward were mostly type B. We concluded that tracking the global biochemical properties of aging 
populations over time inadequately reflects the individual cell-level changes. Instead, it indicates a 
turnover of senescent cells following various trajectories from the earliest time points.  

Given the ongoing debate regarding whether average telomere length or average shortest telomere 
length serves as the most accurate proxy for biological age (31), we next wished to use our simulations 
to estimate values that cannot be measured experimentally and evaluate this issue. We plotted the 
average and the mode of telomere length distribution in the population over time, and the evolution of 
the shortest telomere (represented by the average shortest, the shortest shortest, or the longest 
shortest) in the cell in the absence of telomerase (Fig. 3D). We found that all telomere length values 
shorten in a nonlinear fashion, faster in the first days upon telomerase inactivation, compared to late 
cultures. This is due to the continuous selection of fast-growing cells possessing longer telomeres. This 
was more prominent for the shortest telomere in cells, since it is the telomere to which the stronger 
selection applies. We concluded that while the length of the shortest telomere is the major determinant 
of the onset of senescence, the telomere length mode, as well as the average of the length of the 
shortest telomeres, can effectively act as a nonlinear but reliable proxy for the age of a population. 
Notably, this somewhat counterintuitive effect is anticipated to be amplified as the initial population 
exhibits a greater degree of variation in telomere lengths among its shortest telomeres, a characteristic 
linked to the genealogy of the initial cells and the mechanism of telomere length homeostasis prior to 
telomerase inactivation. 

To illustrate further this effect on the shortest telomeres, we also studied how the population is 
structured over time as a function of the length of the shortest telomere in the initial ancestral cells.  To 
this end, we clustered the initial cells into 10 equally sized bins according to the length of their shortest 
telomere, and recorded the number of cells derived from each of these initial cells over time (Fig. 3E-G). 
We observed that starting at day 3-4, an increasing proportion of the population stemmed from a single 
population of cells with the longest shortest telomeres, reflecting the selection based on the length of 
the initial shortest telomere in the cell. Conversely, the progeny of the cells with shorter shortest 
telomeres constituted the first senescent cells found in cultures, while the cells having longer shortest 
telomeres entered senescence later (Fig. 3F).  In contrast, as expected, ordering the initial cells by 

increasing average telomere length revealed a lesser selection effect (Fig. 3G). Among type B cells, we 
found an early selection effect for cells displaying shorter shortest telomere, meaning that although they 
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undergo a non-terminal arrest early in culture, cells may preserve a significant proliferation potential, a 
tendency that disappears rapidly (Fig. S3A). 
Lastly, we estimated the length of the shortest telomere in cells when entering senescence. We found 
as expected that a large fraction of cells (type A) entered senescence when the shortest telomere was 
around 27 bp, which is the ℓ2&'!  value (Fig. 3H and S3B). Unexpectedly, for type B cells (and type M), 
the length of the shortest telomere was widely distributed, ranging from 0 to 70 bp (comprising ~95% 
of the values). This reveals variability introduced by a first non-terminal arrest: it drives cells into a totally 
different regime and a much more variable route to senescence.  

Influence of initial telomere length distribution and mortality on population dynamics. 

Many mutants and growth conditions are known to affect telomere length homeostasis, and are 
expected to alter senescence rates (32-36). To quantify the consequences of altered initial telomere 
length distribution on the telomerase-negative cell population, we ran simulations of populations in 
which the initial telomere length distribution was modified by a translation of the whole telomere length 
distribution (see Methods). To estimate the effect on senescence rate in a cell population, we defined 
the time when only half of the saturation limit is reached (HSL). We found that HSL varied with the global 
translation of telomere length distribution in a non-linear way. A translation of -20 bp or +20 bp in 
telomere length homeostasis led to a change of -14 h or +17 h in HSL, respectively (Fig. 4A and S4A). As 
expected, average telomere length was shorter when initial telomere length was shorter and the 
shortening rate was maintained for the first 4 days (Fig. 4B and S4B). We then altered telomere length 
distribution by dilatation of the left side of the distribution by ℓ: and, unexpectedly, observed only minor 
effects on the HSL (Fig. 4C and S4C). This counterintuitive result can be explained, again, by the 
pronounced selection pressure acting on cells with longer shortest telomeres, under the condition that 
the initial population size and telomere length heterogeneity is sufficient. Because we altered only the 
distribution of the shortest telomeres, the average telomere shortening remained mostly unchanged 
(Fig. 4D and S4D). 

In order to provide context of numerous pathological conditions that demand increased cell turnover 
and renewal, we next evaluated the impact of a perturbation that is not directly linked to telomere 
processing by increasing the telomere-independent and constant mortality. We found a dramatic effect 
on senescence curves, with an anticipated HSL of ~1 day at 20x increase in mortality, which corresponds 
to an increase from 0.43% estimated in wild-type cells, to 8.6% (Fig. 4E and S4E). Also, the apparent 
shortening rate in the population was found to increase significantly with increasing constant mortality 
(Fig. 4F and S4F). We concluded that the kinetics of replicative senescence and telomere shortening are 
remarkably influenced to co-morbidities.  

Many mutants used to study telomere replication and replicative senescence, especially the ones 
involved in the repair of DNA damage, display varying degrees of slow growth or mortality, despite being 
considered viable, due to their involvement in telomere-independent aspects of genome stability. Yet, 
the fact that these mutations accelerate senescence has been interpreted as supporting their direct role 
in telomere maintenance. To determine whether our model could test the validity of the genetic 
interaction between telomerase inactivation and these mutants, we tested the deletion of RAD51, which 
encodes a recombinase that binds to short telomeres and is involved in the emergence of post-
senescence survivors, and perhaps other mechanisms operating at short telomeres (28, 37-39). RAD51 
deletion has been described as accelerating senescence in populations to various extents (37, 38, 40, 
41). However, it also increases the constant mortality to ~5.4%, probably due to other functions in 
double-strand break repair or replication stress. To measure the contribution of the constant mortality 
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caused by RAD51 deletion in the observed accelerated senescence of rad51D in telomerase-inactivated 
conditions, we performed 1000 simulations of 11 individual cell lineages as if they were grown in the 
microfluidics device in the absence of telomerase and with a constant mortality rate of 5.4% and 
compared it to experimental data extracted from (14). We found that a large portion of the experimental 
curve fit within the confidence interval of simulations (Fig. 4G). We conclude that replicative senescence 
in the absence of RAD51 is largely caused by telomerase-independent Rad51-dependent constant 
mortality. Because part of the curve lies outside the confidence interval, Rad51 may also specifically 
affect cells also when telomerase is absent. Hence, assessing synthetic lethality of RAD51 deletion using 
replicative senescence as a readout may not be the most suitable approach for evaluating the genetic 
interaction between telomerase and RAD51 gene. 

Discussion 

In this study, we leveraged microfluidics-based data on individual lineages of dividing yeast cells with 
inactivated telomerase to build a comprehensive model of replicative senescence, and then applied it 
to simulate population assays commonly used to study replicative senescence. We combined 
information from previous studies in which we found that cell divisions are constrained by telomere 
shortening, and more specifically by the shortening of the shortest telomere in cells, and not simply by 
time or other telomere-related parameters, to fully account for replicative senescence heterogeneity 
(16). It is known that selection biases occur between lineage and population observations (42-44). 
Simulation enables drawing rigorous conclusions on population dynamics from lineage data 
observations. Our study contributes to this methodology, and allows us to decipher which phenomena 
and mechanisms prevail in populations, sometimes quite distinct and even counter-intuitive compared 
to what might be assumed at first sight from lineage data.   

One of the most striking findings of this model lies in the contrasted route to senescence of type A, for 
which senescence occurs at an almost deterministic threshold of around 27 bp for the shortest telomere, 
versus type B cells, for which the probability to trigger senescence is telomere-length independent after 
experiencing a priming telomere-length-dependent non-terminal arrest. We thus suggest the existence 
of tight control mechanisms responsible for triggering senescence when a telomere becomes critically 
short in type A cells. Conversely, the mechanism signaling the terminal arrest in type B cells is likely 
distinct from the one operating in type A cells. Type B cells could die from indirect consequences of some 
processes initiated during the non-terminal arrests, either the prolonged DNA damage checkpoint 
activation and its genetic and epigenetic reprogramming, or the mutational burden associated with it.  

In an experimental setting where one telomere is set shorter than the others and specifically sequenced, 
telomeres with lengths between 10 and 70 bp can be extracted from a senescing cell population, and 
even some chromosome ends lacking telomeric repeats can be detected (15). Recent experimental 
works measuring telomere length in telomerase-negative cells using long-read sequencing proposed an 
estimation of the threshold length for the critically short telomere around 70-75 bp (28, 45). When we 
take into account both type A and B cells in our model, we find an average length lower than 70-75 bp 
(Fig. 3H). However, we note that this average, and in particular the threshold length of 27 bp for type A 
cells which contributes to it, should not be taken as an exact value, but rather as an estimate which can 
depend on simplifying assumptions of the model, on the data used to fit and on uncertainties 
surrounding parameter estimation. It is important to note that for type B cells, we observed an 
accumulation of cells entering senescence at ℓ2&',< = 0, indicating that in vivo, type B cells might indeed 
be the carriers of telomere-free chromosome ends. We also refer to the works of (45, 46), which suggest 
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that individual telomeres display differences in homeostasis length, possibly giving rise to different 
critical length thresholds. Furthermore, subtelomeric elements and heterochromatin status in cis might 
affect the critical length. Our simulations also indicate that the average shortest telomere length, as well 
as the average threshold length for senescence decreases over time because of competition and, as a 
consequence, the change of population structure, i.e. relative proportion of type A and B cells (Fig. 3A, 
C and Supp Fig. S3B). 

When simulating population assays, we did not take into account post-senescence survivor emergence 
for two reasons: first, no microfluidics-based data was available to build and calibrate a model. Second, 
we wanted to focus on understanding to which extent replicative senescence on its own could explain 
experimental observations. Our study highlighted the presence of heterogeneity within the population, 
where cells of different generational ages and different histories co-exist, in particular type B cells, which 
have potentially experienced molecular and cellular events leading to genomic instability (23). 
Importantly, our observation that senescent cells are mainly type A between day 1 and 4, then after day 
4, mainly type B (Fig. 3B, C) – an alternate dominance well-explained by their contrasted route to 
senescence – reinforce the idea that type B cells might be poised to generate post-senescence survivors. 
In this scenario, it is possible that the non-terminal arrests could correspond to attempts at DNA repair 
operating at the signaling telomere that could alter the length and structure of the shortest telomere 
itself, as suggested in (47). 

Beyond the competition affecting population structure and dynamics, shifting perspective from 
individual lineages to populations reveals that, while the length of the initial shortest telomeres fully 
constrains senescence onset in lineages, the initial full distribution of telomere length, and not only the 
initial distribution of the shortest ones, is important for population growth dynamics (Fig. 4A and C). This 
is in accordance with the strong selection bias towards cells displaying the longest shortest telomeres in 
the initial population (Fig. 3E-G, S3A). We can also speculate that as time passes, senescence in a 
population is more often triggered by the telomeres which were initially ranked as second, third, fourth, 
etc. shortest telomere in the ancestor cell. A direct consequence of this dynamics is that the size and 
telomere length heterogeneity of the initial population prior to telomerase inactivation is critical to 
predict proliferation capacity. Conversely, if a specific critically short telomere is inherited in the same 
way in all cells, it is expected to have a significant impact on the whole progeny, in accordance with 
experimental results (11, 15). In the context of humans, for instance, in which telomerase activity is 
repressed in many somatic tissues, the genealogy of telomerase-positive stem cell compartments is thus 
expected to be key to determine how a given tissue proliferation and renewal capacity depends on the 
length of the shortest telomere rather than on the global distribution of telomere lengths.  

Replicative senescence in the absence of telomerase has been extensively investigated in different 
genetic backgrounds and various conditions. Conditions where accelerated or delayed replicative 
senescence is observed, by comparing the kinetics of senescence at the population level, have often 
been interpreted as interfering with telomere biology (25, 38, 48). However, the fact that replicative 
senescence displays an intrinsic heterogeneity and a non-constant mortality makes it not trivial to draw 
such conclusions, as exemplified by the RAD51 deletion effect on senescence, which we found to stem 
mostly from its intrinsic mortality and less from a specific requirement of Rad51 in the absence of 
telomerase (Fig. 4). In addition, relying solely on telomere length at specific time points or telomere 
shortening as predictors of senescence is inadequate, particularly when the initial telomere length is 
modified or mortality is influenced by factors other than telomerase inactivation. 

Our mathematical model built based on a unicellular eukaryote paves the way for in-depth exploration 
of the intricate relationship between telomere length, shortening dynamics (4), and cell growth in 
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different tissues in metazoans (as in (49)). It also provides a solid conceptual framework for the notion 
that accelerated telomere shortening and premature stem cell depletion may underlie various human 
diseases, particularly when compounded by co-morbidities that elevate cell mortality, such as the 
Duchenne muscular dystrophy (50). Our mathematical model might thus serve as a valuable approach 
for investigating the broader implications of telomere length dynamics in the context of human health. 

Materials and Methods 

Telomere shortening model 

We use the model of (16), which consists in imposing that for each chromosome 1/ Only one of the two 
telomeres is shortened, the other conserves the parental length; 2/ It is shortened by the overhang, say 
h, assumed constant; 3/ The telomere shortened for one daughter is unchanged for the other daughter. 
Mathematically, at the n-th generation, we denote by ℓ#' and ℓ!' the random variables of the lengths of 
the two telomeric ends of a given chromosome at generation n. One and only one telomere is shortened 
by the overhang h with equiprobability, such that at the next generation for one of the two daughters 
we have ℓ#'%# = ℓ#' − ℎ𝑏 and ℓ!'%# = ℓ!' − ℎ(1 − 𝑏), and for the other daughter it is the reverse: 
ℓJ#'%# = ℓ#' − ℎ(1 − 𝑏) and ℓJ!'%# = ℓ!' − ℎ𝑏, where b∼Ber(1/2) is a Bernoulli random variable coupling 
the two telomere lengths (ℓ!'%# is shortened by h nucleotides if b is 0, while ℓ#'%# is left unchanged, and 
conversely if b equals 1). Inside cells containing 2k telomeres (k=16), we assume that telomeres of 
different chromosomes are independent (51), so that denoting by 𝐿' = (𝐿#', 𝐿!')=  the matrix of size 2xk 

of the lengths of the 2k telomeres, we have similarly for the two daughters 𝐿' and 𝐿
'

 

 L
𝐿#'%# = 𝐿#' − ℎ𝐵,														𝐿#

'%#
= 𝐿#' − ℎ(1 − 𝐵),						

𝐿!'%# = 𝐿#' − ℎ𝐵,								𝐿!
'%#

						= 	𝐿!'%#
' − ℎ(1 − 𝐵),

 

with 𝐵 = (𝐵#,… ,𝐵>) ∼ 𝐵𝑒𝑟(𝑘, 1/2) is a random vector of k independent Bernoulli variables.  

To model the population experiment (Fig. 1A), we keep the two daughters at each division, whereas for 

the microfluidic experiment (Fig. 1B), we pick up one of the two matrices (𝐿#'%#, 𝐿!'%#) and (𝐿#
'%#

, 𝐿!
'%#

) 
randomly uniformly. 

Initial distribution of telomere lengths 

We assume that initially all telomere lengths are independent identically distributed (i.i.d.) according to 
a law 𝑓&'&(:	𝐿&,?: ∼ 𝑓&'&( , 𝑖 ∈{1,2}, 𝑗 ∈ {1,… ,16}. Given that generation 0 corresponds in our dataset to the 
inactivation of the telomerase, we depart from the distribution of telomere lengths in a telomerase-
positive population (of the same yeast strain as the dataset) at equilibrium. We rely on the distribution 
of telomere lengths 𝑓: of (16) (Fig. S1A) derived by adapting the numerical approach of (11) to this yeast 
strains. Given that the left-tail of the distribution has great influence on the lineages dynamics but is 
poorly characterized experimentally, we test small modifications of 𝑓:, namely translation (by a given 
length ℓ(/-',) and dilatations preserving the mode of the distribution, i.e. dilatations defined by dilating 
Uℓ&'@ , ℓ2A).V (resp. Uℓ2A). , ℓ,B0V) to Uℓ&'@ + ℓ:, ℓ2A).V (resp. to [ℓ2A). , ℓ2A). + ℓ#]) (see 
Supplementary Material for further detail). We optimize the values for ℓ(/-',, ℓ: and ℓ# together with 
the other parameters of the model, see Table 1 for the optimal values and Fig. S1A for the initial 
distribution  𝑓&'&(. 
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Laws of arrest 

Once its telomere lengths determined by the telomere shortening model, the cell type is chosen 
according to the transition probability laws described by the tree diagram of Fig. 1E. The probability rate 
𝑝-CC&).'( represents the chance to die accidentally and is constant, taken from (23). The rates 𝑝,.',D and 
𝑝,.',< are the probability to enter senescence respectively for type A and type B cells. They depend on 
the minimal telomere length ℓ = 𝑚𝑖𝑛	(𝐿') through the law 

𝑝,.',&(ℓ) = 	𝑚𝑖𝑛	(1, 𝑏,.',& 	𝑒𝑥𝑝(−𝑎,.',&ℓ)) if ℓ>ℓ2&',	 𝑝,.',&(ℓ) =1 if ℓ ≤ ℓ2&',	for 𝑖 = 𝐴	𝑜𝑟	𝐵.   

These laws are thus defined by five parameters (𝑎,.',D, 𝑏,.',D, 𝑎,.',< , 𝑏,.',< , ℓ2&'). Fig. 1F displays their 
best-fit values, which shows a remarkable fact: we can simplify the law for type A cells into an all-or-
nothing law 𝑝,.',D=0 for ℓ>ℓ2&' and 𝑝,.',D=1 for ℓ ≤ ℓ2&', whereas 𝑝,.',<(ℓ) = 	𝑏,.',<	𝑒𝑥𝑝(−𝑎,.',<ℓ) 
is a very flat almost uniform law, so that finally only three parameters matter, namely ℓ2&', 𝑎,.',< and 
𝑏,.',<.  

The rates for non-terminal arrests are similar: we define them through the same two-parameter law as 
for senescence: 𝑝'(-(ℓ) = 𝑚𝑖𝑛	(1, 𝑏'(-	𝑒𝑥𝑝(−𝑎'(-ℓ)). Finally, when a cell experiences a sequence of 
arrests, (24) has successfully described the number of consecutive abnormally long cycles, either 
terminal or not, by a geometrical law. This corresponds to a constant probability to exit this sequence 
either by repairing or adapting (𝑝/.0-&/) after a non-terminal arrest, or at the opposite by dying 
(𝑝).-(1)after a senescent cycle. 

Laws of cell cycle duration times 

Whereas cell cycle durations are not fundamental to simulate the microfluidic experiments, the 
definition of laws for the duration of cell cycles is crucial to model the population experiment. Based on 
experimental measurements, and on a threshold D above which a cell cycle duration is considered 
abnormally long, we estimated the laws in the four distinct regimes: normal cell cycle durations for type 
A and type B cells, non-terminal arrest cycle durations and senescent cycle durations (Fig. 1G). According 
to the cell type and cell cycle type, the cycle duration is then picked up at random following the 
corresponding law.  

Parameters values 

Parameters from the literature. The shortening length is taken as the overhang length ℎ = 7 bp, see 
(20). We define the threshold for abnormally long cell cycle durations	𝐷 = 180	min, following the 
thorough sensitivity analysis carried out in (24). From the same reference, we fixed 𝑝).-(1 = 0.58 
and𝑝/.0-&/ = 0.65.	From (23) we get 𝑝-CC&).'( = 4.3	. 109E.  

Parameters from direct experimental measurements. In our experiments we have measured 𝑟,-( =
720. We also pick up at random the cell cycle durations fron the experimental distributions, classified 
into the four categories displayed in Fig. 1G. 

Determination of Ninit 

The experimental value for 𝑁&'&(  is around 105, which is out of reach for simulations. We thus compare 
the behavior of populations originating from different initial number of cells 𝑁&'&(. In order to accurately 
estimate these behaviors (i.e. to have an empirical behavior close to the statistical one) we simulated 
25 times the evolution of a population with a certain fixed initial size 𝑁&'&(. The full sensitivity analysis is 
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detailed in Supplementary Material, see also Fig S2. We first noticed that the less cell initially present, 
the more variability between simulations, which supports the idea that the variability in the distribution 
of initial telomere lengths is an important source of heterogeneity in senescence (11, 15). Even though 
extreme behaviors are sensitive to 𝑁&'&( unlike average behaviors, the decrease in variability stabilizes 
around 𝑁&'&( = 200, and then corresponds to the variability intrinsic to the stochastic evolution. 
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Figures 

 

Figure 1: Principle and description of the mathematical model of replicative senescence 

(A-B) Schematic representation of population (A) and single-cell lineage (B) experiments. (C) 
Experimental data of microfluidics experiments from (23). Display of consecutive cell cycle durations of 
TetO2-TLC1 lineages. Generation 0 corresponds to the moment from which telomerase is inactivated. 
Each horizontal line is an individual cell lineage, and each segment is a cell cycle. Cell cycle duration (in 
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minutes) is indicated by the color bar on the right. (D) Three examples of lineages containing indicated 
type cells (A, B or M). The colors of the squares indicate whether the cell cycle is normal (green) or 
abnormally long (red). Vertical or horizontal strips specify whether the cell cycles are terminal (never 
followed by a normal cell cycle) or not, respectively. Black or gray cells indicate the type of death. (E) 
Tree diagram of the mathematical model. It indicates the several fates of each cell type and respective 
probability rates, some being functions of the length of the shortest telomere in the cell ℓ. Legends as 
in (D). (F) Best fits of indicated probability rates as functions of the length of the shortest telomere ℓ.  
(G) Probability densities of cell cycle durations for indicated cell types. (H) Simulated data of one 
microfluidics experiment with the best-fit mathematical model (parameters in Table 1). Other examples 
are shown in Fig. S1F-G. 

 

Figure 2: Mathematical model applied to 
population experiments 

(A) Simulation of population growth as a function of 
time, as schematized in Figure 1A, with best-fit 
parameters of Table 1 and each day an initial number 
of cells 𝑁&'&( = 1000, reaching a saturation number 
𝑁,-( = 𝑟,-(𝑁&'&(, with 𝑟,-( = 1000. (B) Comparison 
between experimental data from (20) of telomerase-
negative cells, and simulations using the best-fit model 
with 𝑁&'&( = 300 and 𝑟,-( = 720, corresponding to 
the experimental conditions (dilution starting at 
𝑂𝐷$:: = 0.0125 and reaching saturation at 𝑂𝐷$:: ≈
9 after 24h of growth in telomerase-positive 
conditions (see Figure S2A). Only simulated values at 
the experimental times of observation are displayed, 
once per day. Error bars of experimental values 
correspond to SD of 3 independent experiments. Error 
bars of simulated data correspond to SD of 30 
independent simulations. (C) Comparison of the 
telomere length mode between the same experiments 
and simulations as in (B). Error bars of experimental 
values correspond to SD of 3 independent 
experiments. Error bars of simulated data correspond 
to SD of 30 independent simulations. 
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Figure 3: Hidden parameters, experimentally inaccessible, extracted from simulations of 
telomerase-negative cell cultures 

(A) Telomere length of indicated telomere features. (B) Generational age distribution evolution with 
time. (C) Evolution over time of the proportions of indicated cell categories. (D) Evolution over time of 
the proportion of senescent cells in the total population (black dotted curve) and the proportion of type 
A or type B cells among the senescent population. (E) Proportion of descendants according to the initial 
shortest telomere length of their ancestors. (F) Same as (E) for senescent cells only. (G) Proportion of 

0 2 4 6 8
Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
po
rti
on

of
ce
lls senescent

senescent type B
senescent type A

0 1 2 3 4 5 6 7 8
Time (day)

0

20

40

60

80

G
en
er
at
io
n

Average

Extremum values
95% of the values

0 1 2 3 4 5 6 7 8
Time (day)

0 1 2 3 4 5 6 7 8
Time (day)

0.0

0.2

0.4

0.6

0.8

P
ro
po
rti
on

of
de
sc
en
da
nt
s

am
on
g
se
ne
sc
en
tc
el
ls

0.0

0.2

0.4

0.6

0.8

P
ro
po
rti
on

of
de
sc
en
da
nt
s 1st shortest

2nd shortest

3rd shortest

4th shortest

5th shortest

6th shortest

7th shortest

8th shortest

9th shortest

10th shortest

bins according to the length of
shortest telomere at day 0

1st shortest

2nd shortest

3rd shortest

4th shortest

5th shortest

6th shortest

7th shortest

8th shortest

9th shortest

10th shortest

bins according to the length of
shortest telomere at day 0

1st shortest

2nd shortest

3rd shortest

4th shortest

5th shortest

6th shortest

7th shortest

8th shortest

9th shortest

10th shortest

bins according to the average
telomere length at day 0

0 50 100
Telomere length triggering senescence (bp)

0

2

4

C
ou
nt

×104

0 50 100
0

5

×103 Cell type

B
M
A

0 1 2 3 4 5 6 7 8
Time (day)

0.0

0.1

0.2

0.3

0.4

0.5

P
ro
po
rti
on

of
de
sc
en
da
nt
s

00 1 2 3 4 5 6 7 8
Time (day)

0

100

200

300
Te
lo
m
er
e
le
ng
th
(b
p)

Average
Mode
Longest shortest
Average shortest
Shortest

0 1 2 3 4 5 6 7 8
Time (day)

0.00

0.25

0.50

0.75

1.00

P
ro
po
rti
on

of
ce
lls

type A
type B
senescent

Extremum values
95% of the values

D H

E

F

Figure 3

A

B

C G

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.22.568287doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.22.568287


19 

 

descendants according to the average telomere length of their ancestors. (H) Distribution of the length 
of the shortest telomere in senescent cells for indicated cell types.  

 

Figure 4: Effects of altering telomere length prior to telomerase inactivation or the constant 
mortality rate on replicative senescence 

(A-F) Plot of the simulation of population growth (A, C, E) and linked average telomere length (B, D, F) 
as measured each 24 h, as schematized in Fig. 1A, with best-fit parameters of Table 1 and each day an 
initial number of cells 𝑁&'&( = 1000, reaching a saturation number 𝑁,-( = 𝑟,-(𝑁&'&(, with 𝑟,-( = 1000. 
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HSL and relevant x-axis coordinates are indicated in red (A-B) Effect of initial global telomere length 
distribution translation towards longer or shorter average telomeres on replicative senescence at the 
scale of populations. (C-D) Effect of altering positively or negatively the left side of telomere length 
distribution. (E-F) Effect of increasing telomere-independent constant mortality rate (paccident). (G) 
Generation of senescence onset for simulated independent lineages as schematized in Fig. 1B ordered 
by lifespan using different constant mortality rates (paccident).  (H) Median generation onset derived from 
(G) plotted as a function of increasing (paccident). 

Table 

Table 1:  Parameters fitted on the microfluidic data and used for the population simulation 
experiments  

parameter value 
𝑎'(- 0.02 
𝑏'(- 0.44 
𝑎,.',D 0.19 
𝑏,.',D 0.73 
𝑎,.',< 0 
𝑏,.',< 0.12 
ℓ2&',D 27 
ℓ2&',< 0 
ℓ(/-', 0 
ℓ: 40 
ℓ# 58 
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